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Abstract. The dynamics and the critical behaviour of dimer-dimer surface reactions of the
type A,+ B, > B, A are investigated by means of Monte Carlo simulations and finite-size
analysis. Three models, which follow the Langmuir-Hinshelwood mechanism and involves
the formation of intermediate AB-species are proposed and studied. Neglecting both
diffusion and desorption of the reactants (model M1), a critical point (p,,) is found at
Pis, =3 (Ps, is the partial pressure of B;-dimers in the gas phase), such that for Pa, <3
(p52>§) the surface becomes irreversibly saturated by a *binary compound’ of A and
AB-species (B-species), respectively. The reaction proceeds only at py=Z Assuming
B-diffusion (model M2) the critical point remains unchanged and the main features of M2
are basically the same as those of M1. The third model {M3) considers the recombination
reaction of adsorbed B-species leading to a dimer desorption. M3 has a critical point at
P18,=0.7014, as it follows from a finite-size analysis. For pg, < p, 5, the surface is saturated
by A and AB-species, while for pg > p,5, a reaction window with B,A production is
found. So, at p, g, one has an irreversible transitton from an off-equilibrium saturated state
to a stationary regime with sustained reaction. The critical behaviour of the rate of
production and the reactant’s coverage is analysed and the corresponding critical exponents
are evaluated.

1. Introduction

Very recently there has been considerable interest in the study of microscopic models
based upon the Langmuir-Hinshelwood mechanism for heterogeneously catalysed
reactions [1-21]. The simplest case is the irreversible monomer-monomer (Mm) reaction
scheme of the type A+ B> AB, which has a critical point at ps =3 (pg is the partial
pressure of B-monomers in the gas phase) [2, 4, 6, 13, 14]). Assuming finite desorption

probabilities for boih reactants, ihe Mn scheme exhibits a rich variety of dynamicai
phenomena such as self-sustained oscillations, bistability and chaos [7, 8].

A more complex model is the irreversible dimer-monomer {pM) reaction scheme
(3A,+ B - AB) as proposed by Ziff et af [1]. This model exhibits two irreversible phase
transitions (1pTs) from a stationary regime with AB production to surface saturated
states with A and B species [1, 3-5, 10-13, 15-21], respectively. The interesting critical
behaviour of the bM model has been investigated by means of various technigues and
using different kinds of substrata [4, 16-19]. Variants of the originally proposed pm
model which accounts for variable reaction and adsorption rates [15], reactant’s

diffusion [11, 20] and desorption [21], etc, also exhibit interesting dynamic behaviour.
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In this work three models for the dimer-dimer (Dp) surface reaction scheme of
the type 3A,+ B, > B,A are proposed and studied by means of Monte Carlo simulations
and finite-size arguments. The models involve the formation of intermediate AB species
on the surface, since they are inspired in the catalytic oxidation of hydrogen, i.e.
A;=0,, B,=H,, B,A=H,0 and AB = OH. Likewise both the MM and the pmM models,
the studied madels for the DD process, also exhibit 1e7s. So, the critical points and the
critical exponents of the relevant properties are determined. Since major interest in
the study of particular models arises from the lack of a general theory to describe the
observed rich variety of irreversible critical phenomena, it is expected that the occur-
rence of 1pTs in the proposed DD models would stimulate further work in that direction.

2. The dimer—dimer surface reaction models and the simulation method

The model reaction proceeds according to the Langmuir-Hinshelwood {LH) reaction
mechanism, i.e. both reactants have to be adsorbed on the catalyst surface; so

A(g)+2(") > 2A(a) (1a)
Big)+2() ==2B(a) (k=) (1b)
A{a)+ Bla)-» AB(a)+(*) (1c)
AB(a)+ B(a)-» B,A{g)+2(*) (1d)

where (*), (a), and (g) correspond to a vacant site of the surface, the adsorbed and
gas phase, respectively, and k; and k, are the rate constants for B, adsorption and
desorption, respectively.

Likewise for both the MM and pm models, the proposed mechanism for the pp
process {equations la-d) is not intended to represent that of any actual catalytic
reaction, but to simulate a generic bimolecular LH reaction. Nevertheless, one has to
recognize that the bMm and pp models are inspired by the catalytic oxidation of carbon
monoxide and hydrogen, respectively. The former has been, since Faraday in 1844
[22], extensively studied (for reviews up to 1980-81 see [23] and [24], and for more
recent results see [25-27] and references therein).

In this work, three variants of the proposed mechanism are studied and they have
been classified as follows: M1=k, =10, i.e. the recombinative desorption of B, is not
considered and surface diffusion of the adsorbed species is neglected; M2=like M1
but assuming B{(a) diffusion; and M3 =like M2 but with k=00, i.e. including B,
desorption which may occur after recombination of two B{a) species. Both diffusion
of B{a) species and desorption of B, dimers are assumed because H and H, are more
mobile and desorb at lower temperature than O and O,, respectively [25-27]. On the
other hand it is assumed that the step which led to the formation of AB(a) species
{hydroxyl groups), equation (1¢), produces a vacant site on the surface based on the
fact that OH groups are adsorbed through the O atom with the H one pointing away
from the surface [24, 28]. Accumulation of the product (8,4} on the surface can be
neglected according to experimental results showing that water desorbs immediately
after formation [25-27]. On the other hand, the recombination of AB(«) species, which
may play a role in the oxidation of hydrogen at low temperature [26, 27], will be
studied in a forthcoming work [29]. The assumption that both A, and B, dimers can
desorb simultanecusly has not been considered because it prevents the occurrence of
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truly saturated states with the reactants and consequently the existence of 1pTs. Relevant
data for the understanding of the models such as the rate of B,A production (R), the
surface coverage with Afa), B{a) and AB(a) species (%4, &5 and 9,5, respectively)
are studied as a function of the partial pressure of B; in the gas phase, namely pp,.

Simulations are performed in the square lattice of size L { L < 600) assuming periodic
boundary conditions. The algorithm for the Monte Carlo simulation of the bp model,
variant M1, can be summarized as follows: (i} A surface site is selected at random
and if that site is occupied the trial ends; otherwise a B, (A,) molecule is selected at
random with probability pg, (1—p3,), respectively. (ii) Since in both cases one has to
adsorb a dimer, a nearest-neighbour (NN) site is also selected at random. If that site
is already occupied the trial ends because there is no place for dimer adsorption.
Otherwise the dimer is adsorbed. (iii}) After a successful adsorption of a dimer one
has to investigate their six NN sites on the square lattice in order to check for the
presence of A(a) and AB(a) species in the case of B, adsorption, and for B{a) species
in the case of A; adsorption. A(a)-B(a) and B(a)-AB{a) species occupying NN sites
led to the formation of AB(a) and B,A(g) and the corresponding number of vacant
sites, respectively, according to the reaction scheme (1). AB species are formed on the
site occupied by A(a) while the site corresponding to B{a) is vacated. When more
than one NN of type B(a) are found around a newly-adsorbed species of type A, one
of them is selected at random in order to form an AB{a) species, but this intermediate
immediately reacts with one (randomly selected) of the remaining B{a) to form B,A(g).
Note that random selection of the B(a) species is only relevant when the number of
NNs is three. On the other hand, for a newly-adsorbed B species, there could be both
A(a}and AB(a) nns, If all NNs are of the same kind the reaction is decided at random.
Otherwise, if one has NNs of different type, the formation of the product B,A(g) take
precedence over the formation of the intermediate AB{a).

Since modeil M2 includes B(a) diffusion, one has to modify step (i). In fact, if the
site selected at random is empty or occupied by A(a) or AB(a) species the algorithm
proceeds as in the case M1. Otherwise, if the selected site (say site 1) is occupied by
a B{a) species a NN site (say site 2) is selected at random. If site 2 is occupied the
trial ends, otherwise B(a) is allowed to diffuse to site 2 while site 1 is vacated. So,
simulations employ a fixed (unit) diffusion rate. After a successful diffusion event one
has to investigate the three ~n sites of site 2 (notice that site 1 can be excluded) in
order to check for the presence of A{a) and AB(a) species as in step (iii) of M1.

Finally the algorithm for the variant M3 is based upon the M2 one but considering
the desorption of B, dimers formed by two NN B{a) species. This reaction followed
by desorption left two vacant sites on the surface. Notice that k; =co and k;=cc are
used to symbolize that dimer adsorption on two NN empty sites and the recombination
of B(a) monomers adsorbed on two NN sites occur with probability one, respectively.
Consequently, every B, which does not react on adsorption is desorbed.

The Monte Carlo time unit (¢) is defined such that each site of the lattice may be
visited once, on average. Simulations are performed until t =10*-10° and averages are
taken after a suitable interval of time has elapsed (usually t = 5X 10°) in order to avoid
correlations with the transient period of the reaction. The time required for the system
for relaxation depends on the proximity to the critical points; therefore it can be
determined when stabilization of the monitored quantities, namely R, #,, 9.5, and
9, is observed. The simulations are performed in a multi-transputer system of five
parallel T800 processors, hosted by a PC. The algorithms are written in OCCAM 2
[30], including the random number generator [31].
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3. Results and discussion

Figure 1 shows the dependence of the surface coverage with A(a), B(a) and AB(a)
species (¥4, 35, Fap, respectively) on the partial pressure of B, in the gas phase (pg,)
for model M1. In this case one observed the occurrence of an 1pT at the critical value
of pg, given by p,,, =% Runs performed using Pp,=0.6665 and pp =0.6668 led
invariably to surface saturation, strongly suggesting that the critical point should be

exactly p; 5, = 3. This statement is further supported by the stoichiometry of the reaction,

as discussed below, Additionally, solving the mean field rate equations of the pp
reaction process we have shown [32] for both models M1 and M2 the existence of a
single critical point at p,s,=3.
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Figure 1. Plots of surface reactant coverages versus pg, for the mode! M1. The inset shows
the dependence of #3 on pg, just below the critical point p152=§. Data points are averages
taken over 100 samples, and in most cases the error bars are smaller than the size of the
point itself. More details in the text.

Dramatic changes occurring in the surface configuration of the adsorbed species
in the neighbourhood of p, s, are shown in figure 2. It is found that for pg,> p,4, the
surface becomes saturated (poisoned)} by B(a) species and the production of B,A
always stops after a short transient period (figure 2(a)). Likewise, for pp,« p.p, the
surface is saturated by both A(a) and AB(a) species Close to P1s, {but p52<p131)
the surface is also saturated, but now for A{a}, AB{a) and a minority of B{a) species,
as is shown in the inset of figure 1 (see also figure 2(b)). The occurrence of smail, but
measurable, values of 93 slightly below p, s, is due to the formation on the surface of
small clusters (monomers in the particular example shown in figure 2(b)) of B(a)
particles surrounded by special configurations of empty sites which do not allow further
adsorption of dimers requiring a pair of NN vacant sites. Natice that for pg,—> 0 and

Pu,~ ! both 8, and &, approach 3, = &5 =0.907, which corresponds to the average

occupancy probability of the random dimer adsorption problem [33, 34]. On the other
hand for pg, < P, (P, > P15,) One also has that §,+ 3., =0.9 (3, =0.9), respectively.
So, at the saturated states there is always a certain fraction of vacant sites, but the
reaction stops because there is no available place for dimer adsorption. These vacant
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Figure 2. Typical snapshot configurations of the re-
actants on the surface characteristic of the model
M1. Sample size L=50, O= A(a), B = B(a) and
x = AB(a), empty sites are left in white. (a) Satur-
ated surface with B(a) (85=0.9) after t==10° for
Pa,=0.68, i.c. slightly above p,g,. (b) Saturated sur-
face with A{a) (#,=051), AB(a) &,5=0.35 and
few B(a) monomers (9, =4x107%) after t = 10° for
P, =0.65, ie. slightly below p, p,. (c} Configuration
ohtained during the stationary regime justat p,, =2

for r=3x10°, 9,=0.13, 63=>=0.45 and 19“—0.13.

sites can easily be distinguished in the typical configurations shown in both figures
2(a) and 2(b).

Finally, at the critical point p, s, = § the production of B,A remains almost stationary
and the reaction seems to proceed indefinitely. Notice that this statement would be
correct only in the limit L - o0 because coverage fluctuations occurring in finite systems
would cause surface saturation at finite times. A typical snapshot of the surface
configuration during the stationary regime with B>A production just at p, 5, is shown
in figure 2(c). In this case one observes the growth of rather big islands and also some
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small clusters formed on one side by B(a) species and on the other one by a ‘binary
compound’ of A(a) and AB(a) species. As can be observed in figure 2(¢), vacant sites
at the inner part of the islands are in most cases ‘single sites’. Since dimer adsorption
on these kind of sites is not possible, one concludes that the inner part of the islands
does not contribute significantly to the production of B,A4, and consequently most
reaction events should occur at the perimeter of the islands. In fact, islands have to
be surrounded by empty sites and, in particular, reaction events occurring on these
sites are responsible for the shape and size fluctuations of the islands.

The occurrence of a critical point at p,5,=% is given by the stoichiometry of the
DD reaction B,+3iA,~ B,A; likewise one has a critical point at ps =3 for the MM
reaction A+ B—> AB [2,4,6, 13, 14].

Results obtained with the M2 model are only slightly different from those aiready
discussed. On the one hand, for pg,>p,y, it is found that ¥ - 1 because, due to
diffusion, the restrictions of the random dimer filling problem are somewhat relaxed.
On the other hand, for pp, close to p,p, (py, <Pp,s,), in contrast to the M1 model one
has 95 =0 because B(a) diffusion causes the formation of AB{a) and B,Afg) species.
Due to this effect, the coverages 94 and 8,, are slightly different from those of the
model M1, but also in model M2 one has that #,+9,5=<0.9 for ps, <ps,.

Results corresponding to model M3 are shown in figure 3. Unlike in the previously
discussed models M1 and M2, where the reaction proceeds only for a single value of
P&, namely the critical point p,z,, the recombinative reaction between two adjacent
B(a) species which led to B, desorption causes the occurrence of a reaction window,
In fact, from figure 3 it follows that for py < p,p =0.7014, the system is saturated by
A(a) and AB(a) species {as in the cases of models M1 and M2), while at p,5, one
observes an 1pT to a state with B,A production which remains stationary within the
range p.p, < ps, < 1. Some typical surface configurations of the reactants on the surface,
within the stationary regime are shown in figure 4. They are quite different from that
obtained for model M1 (figure 2(c)). In fact, figure 4(a) shows a snapshot of the
surface for pg,=0.79, i.e. close to the value at which the rate of B,A production is
maximum (see figure 3). In this case the formation of small clusters of the binary
compound {A{a)+ AB{a)}and few B{a) monomers can be observed. The total surface
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Figure 3. Plot of the rate of B,A production (R} and the surface coverages with the
reactants versus p g, for the model M3, Data points are averages taken gver 100 (10} samples
for pg, < Pya, {Pn,™ P1a,), TESpectively. in mosi cases the error bars are smalier than the
size of the pc;inl itself, More details in the text.
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coverage is ¢4+ F45+ 35 =024, s0 most surface sites remain vacant. To the left of
the B,A production maximum, figure 4(b) for ps,= 0.725, nearly 50% of the surface
is covered by islands and small clusters of the binary compound. Also, few B(a)
monomers are adsorbed. Slightly below and just at the critical point the surface
configurations are quite similar to those of the model M1 obtained under equivalent
conditions; see, for example, figure 2(b). It is interesting to note that at p, 5 ~0.7014
the surface coverage &, =0.55 is within the range of critical probabilities (p,.) already
determined for various percolation models given, for example by 0.47<p.<0.66
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[35-39]; for reviews on the percolation theory see [39]. So, one may consider, among
others, the following two possibilities: (i) Both components of the binary compound
are well mixed preventing the formation of A(a) percolating clusters; or (ii} A(a)
islands may span the whole lattice forming some sort of ‘backbone’ to which AB(a)
species (the minority) can attach. Since at p,5, percolating clusters of A(a) species
are not found, possibility (ii) has to be disregarded while (i) seems to be in qualitative
agreement with the configuration shown in figure 4(b). To the right of the B,A
production maximum, figure 4(c} for py,=0.9, only 10% of the surface is covered by
small clusters (mostly monomers) of the reactants but in contrast to figures 4(a) and
4(b), ¥4 < Fap <3z as expected from figure 3.

In order to further investigate the critical behaviour of model M3, notice that
working with finite lattices one can only determine L-dependent “critical points’[16, 17]
(say p.s,(L)) as usually happens in the study of reversible phase transitions using the
Monte Carlo method [40]. This statement is iltustrated in figure 5 where the poisoning
(saturation) probability (pp) is plotted against p . for lattices of size L =65 and L= 100.
pps are evaluated performing 10° Monte Carlo simulations with different samples up
to a maximum time of r = 10%. Under these conditions the ‘critical points’ p. (L) are
determined at the limit P> 0 and assuming error bars given by the interval between
consecutive data points. Even for rather small lattices, like those used in the example
of figure 5, this procedure is time consuming. This shortcoming is aveoided when
working with bigger lattices (L > 100, see figure 6) because one needs only to make a
detailed scan of pg, values close to the limit pp=0.

aso T T
BF d a)e L= 865
— b) o Lz 100—

25— —

\ ‘l b .\. ila
0703 0.705

[
8,

Figure 5. The poisoning probability (pp) with A(a) and AB(a) species as a function of
Pa, for samples of different size. The arrows show the L-dependent critical probabilities
Poa,{L). More details in the text.

Figure 6 shows a plot of p.s,(L) versus L™" and the obtained straight line allows
us to determine p,p(L—>00)=0.7014 uvsing least-square regression and neglecting
end-points for small lattices (L =< 50), It should be noticed that the L-dependent ‘critical
probabilities’ would also depend on the particular conditions assumed for their determi-
nation; for example performing a different number of Monte Carlo simulations or
waiting for poisoning during a different period of time. Nevertheless it is expected
that the L - oo critical value p,p, may be independent of the employed method.

A precise determination of the critical point at which the 1pT of the pp model M3
take place allow us to study its critical behaviour. In order to do this, power law
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Figure 6. The L-dependent critical probabilities p.p (L} plotted against the inverse of the
lattice size (L™*). In most cases the error bars are the size of the point itself ot smaller.
The straight line is a least-squares fit of the data {neglecting end-peints corresponding to
smaller lattices ( L < 50}) which intercepts the vertical axis at the L— 0 critical probability
given by p, 5, =0.7014. More details in the text.

dependence of the relevant quantities are proposed, so

Rx(ps,—pia)P Pr.> PR, (2)
and

ﬂsoc(PB,_sz)ﬁz Ps,” P15, (3)
where §, and 3, are critical exponents. Note that both R =0and &3 =0 when pg,=pys,.
The critical behaviour of 34 and #,p is analysed simultaneously by assuming that for
L-»coone has 94+ 0450907 when pg,=p,p,; i.c. the best estimate of the random
filling dimer problem [33, 34] which is also in excellent agreement with the Monte

Carlo results of the present work, as has already been discussed. Therefore, the following
power law dependence is assumed

Aﬁ=(0-907_19A—ﬂAB)OC(PB;_sz)'G’ Pp,= Pis, (4)

where 3, is also a critical exponent.

Figure 7 shows a log-log plot of R versus Ap (Ap=pgs,—p.s,) obtained using
samples of different size but taking in all cases pg,> p.g,(L); i.e. when pp=0, in order
to avoid finite-size effects. For this reason the critical probability can only be closely
approached (Ap=2x107*) using large samples (see figure 7). The straight line with
slope B, =1 suggest that R increases linearly near the critical region.

|
10 T I T 7 a
. 4 L=200 [
H ° L=400
« L6500 4, ﬂ

i3
2x10 I | ] ]
m0” 167 20> 152
ap
Figure 7. Log-log plot of R versus Ap (see equation (2)) for lattices of different size. The
straight line with slope 8, =1 has been drawn for comparison.
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Figure 8. Log-log plot of &5 versus Ap (see equation (3)} for lattices of different size. The
straight line with slope 8, =1 has been drawn for comparison.
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Figure 9. Log-log plot of AJ versus Ap (see equation (4)) for lattices of different size.
The straight line with slope B; =1 has been drawn for comparison.

In order to test the power law assumption of (3), figure 8 shows a log-log plot of
%y versus Ap. In this case also, the obtained straight line with slope 8, =1 suggests
linear growth of B-species coverage close to the critical point. Finally, a log-log plot
of Ad versus Ap (figure 9) also shows a straight line behaviour, but now with slope
B;=3. Note that all exponents are approximated by exact fractions or integer numbers
within an estimated error of +5% or less. Summing up, the conjectured power law
dependences {equations (2)-(4)} are found to hold in the region clase to the critical
point and the corresponding critical exponents can be evaluated.

4. Conclusions

The critical behaviour of three models for the pp (34,+ B, B,A) surface reaction
scheme is studied by means of Monte Carlo simulations on the square lattice. In
absence of surface diffusion and desorption {model M1} a critical point at p,g, =1is
found such that, for pg,> pis, (Ps, <P1s,), the surface becomes saturated by B(a}
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species (a binary compound formed by A(a) and AB(a) species, respectively). The
reaction has a stationary state with B,A production only at p,s,. Incorporating the
surface diffusion of B(a) species (model M2) the critical point does not change, and
only minor changes in the dependence of 84, 95 and .5 on p,, are found when
compared with results from M1. So, surface diffusion does not affect the overall critical
behaviour of the studied pnp scheme.

Assuming the desorption of B, dimers as a consequence of the recombinative

reaction of B{a) species {(model M3), a richer and more interesting critical behaviour
is observed. In fact, using a finite-size analysis a critical point is found at p,5,=0.7014
(L—00). For pg,<p,z, the surface is saturated by A(a) and AB(a) species and for
Pis, <Pa, <1 the system reaches a reactive stationary state with B,A production. Close
to the irreversible phase transition at p, 5, the relevant quantities under study, namely
R, 05 and (9,4 345) exhibit simple power law behaviour with critical exponents
B1=1, B.=1 and B; =3, respectively.

The study of the rich variety of critical phenomena exhibited by these simple
models, inspired in the catalytic oxidation of hydrogen, suggests that Monte Carlo
simulations may have much to contribute to the understanding of heterogeneous
catalysis. Also it is expected that the occurrence of 1prs in the pD surface reaction
scheme, and particularly in model M3, will stimulate further effort in the development
of a suitable theory for irreversible dynamic reactions. An extension of the o model

to account for the recombination reaction of AB(a) species is in progress.
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